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Abstract. A companion of Ostrowski’s integral inequality for differentiable

mappings whose first derivatives are bounded is proved. Applications to a

composite quadrature rule and to probability density functions are considered.

1. Introduction

In 1938, Ostrowski established a very interesting inequality for differentiable
mappings with bounded derivatives, as follows [4]:

Theorem 1. Let f : I ⊂ R → R be a differentiable mapping on I◦, the interior of
the interval I, such that f ′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′ (x)| ≤ M ,
then the following inequality,
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(1.1)

holds for all x ∈ [a, b]. The constant 1
4 is the best possible in the sense that it cannot

be replaced by a smaller constant.

The following integral inequality which establishes a connection between the
integral of the product of two functions and the product of the integrals of the two
functions is well known in the literature as Grüss’ inequality [8].

Theorem 2. Let f, g : [a, b] → R be two integrable functions such that φ ≤ f (t) ≤
Φ and γ ≤ g (t) ≤ Γ for all t ∈ [a, b], φ,Φ, γ and Γ are constants. Then we have
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Motivated by [3], Dragomir in [5] has proved the following companion of the
Ostrowski inequality:
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Theorem 3. Let f : I ⊂ R → R be an absolutely continuous function on [a, b].
Then we have the inequalities

(1.3)
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2 ].

Recently, Alomari [1] proved a companion inequality for differentiable mappings
whose derivatives are bounded.

Theorem 4. Let f : I ⊂ R → R be a differentiable mapping on I◦, the interior
of the interval I, and let a, b ∈ I with a < b. If f ′ ∈ L1[a, b] and γ ≤ f ′ (x) ≤ Γ,
∀x ∈ [a, b], then the following inequality holds,

(1.4)
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for all x ∈ [a, a+b
2 ].

In [6], Dragomir established some inequalities for this companion for mappings
of bounded variation. In [7], Liu introduced some companions of an Ostrowski
type inequality for functions whose second derivatives are absolutely continuous.
Recently, Barnett, Dragomir and Gomma [2], have proved some companions for the
Ostrowski inequality and the generalized trapezoid inequality.

In the present paper we shall derive a companion inequality of Ostrowski’s type
using Grüss’ result and then discuss its applications for a composite quadrature
rule and for probability density functions.

2. The Results

The following companion of Ostrowski’s inequality holds.

Theorem 5. Let f : [a, b] → R be a differentiable mapping on (a, b). If f ′ ∈ L1[a, b]
and γ ≤ f ′ (t) ≤ Γ, for all t ∈ [a, b], then the inequality holds
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Proof. Let us define the mapping
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Integrating by parts, we have
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Applying Theorem 2 to the mappings p(x, ·) and f ′(·), we obtain
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. By a simple calculation we get
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Finally, combining (2.2)–(2.4), we obtain (2.1) as required. �

Corollary 1. In the inequality (2.1), choose
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(2) x = 3a+b
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An inequality of Ostrowski’s type may be stated as follows:
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Corollary 2. Let f as in Theorem 5. Additionally, if f is symmetric about the
x-axis, i.e., f (a + b − x) = f (x), then we have
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for all x ∈ [a, a+b
2 ]. For instance, choose x = a, we have
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3. A Composite Quadrature Formula

Let In : a = x0 < x1 < · · · < xn = b be a division of the interval [a, b] and
hi = xi+1 − xi, (i = 0, 1, 2, · · · , n − 1).

Consider the general quadrature formula
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The following result holds.

Theorem 6. Let f : I ⊂ R → R be a differentiable mapping on I◦, the interior
of the interval I, where a, b ∈ I with a < b. If f ′ ∈ L1[a, b] and γ ≤ f ′ (x) ≤ Γ,
∀x ∈ [a, b]. Then, we have
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which follows form (2.1), that
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which completes the proof. �

4. APPLICATIONS TO PROBABILITY DENSITY FUNCTIONS

Let X be a random variable taking values in the finite interval [a, b], with the
probability density function f : [a, b] → [0, 1] with the cumulative distribution

function F (x) = Pr(X ≤ x) =
∫ b

a
f(t)dt.

Theorem 7. With the assumptions of Theorem 4, we have the inequality
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Proof. In the proof of Theorem 4, let f = F , and taking into account that

E (X) =

∫ b

a

tdF (t) = b −

∫ b

a

F (t) dt.

We left the details to the interested reader. �

Corollary 3. In Theorem 7, choose x = 3a+b
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Corollary 4. In Theorem 7, if F is symmetric about the x-axis, i.e., F (a + b − x) =
F (x), we have
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