

**A COMPANION OF OSTROWSKI'S INEQUALITY FOR
MAPPINGS WHOSE FIRST DERIVATIVES ARE BOUNDED
AND APPLICATIONS IN NUMERICAL INTEGRATION**

MOHAMMAD W. ALOMARI

ABSTRACT. A companion of Ostrowski's integral inequality for differentiable mappings whose first derivatives are bounded is proved. Applications to a composite quadrature rule and to probability density functions are considered.

1. INTRODUCTION

In 1938, Ostrowski established a very interesting inequality for differentiable mappings with bounded derivatives, as follows [4]:

Theorem 1. *Let $f : I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I° , the interior of the interval I , such that $f' \in L[a, b]$, where $a, b \in I$ with $a < b$. If $|f'(x)| \leq M$, then the following inequality,*

$$(1.1) \quad \left| f(x) - \frac{1}{b-a} \int_a^b f(u) du \right| \leq M(b-a) \left[\frac{1}{4} + \frac{(x - \frac{a+b}{2})^2}{(b-a)^2} \right]$$

holds for all $x \in [a, b]$. The constant $\frac{1}{4}$ is the best possible in the sense that it cannot be replaced by a smaller constant.

The following integral inequality which establishes a connection between the integral of the product of two functions and the product of the integrals of the two functions is well known in the literature as Grüss' inequality [8].

Theorem 2. *Let $f, g : [a, b] \rightarrow \mathbb{R}$ be two integrable functions such that $\phi \leq f(t) \leq \Phi$ and $\gamma \leq g(t) \leq \Gamma$ for all $t \in [a, b]$, ϕ, Φ, γ and Γ are constants. Then we have*

$$(1.2) \quad \begin{aligned} & \left| \frac{1}{b-a} \int_a^b f(t) g(t) dt - \frac{1}{b-a} \int_a^b f(t) dt \cdot \frac{1}{b-a} \int_a^b g(t) dt \right| \\ & \leq \frac{1}{4} (\Phi - \phi) (\Gamma - \gamma). \end{aligned}$$

Motivated by [3], Dragomir in [5] has proved the following companion of the Ostrowski inequality:

Date: July 6, 2011.

2000 Mathematics Subject Classification. 26D10, 26A15, 26A16, 26A51.

Key words and phrases. Ostrowski's inequality, Differentiable mapping, Bounded mapping.

Theorem 3. Let $f : I \subset \mathbb{R} \rightarrow \mathbb{R}$ be an absolutely continuous function on $[a, b]$. Then we have the inequalities

$$(1.3) \quad \left| \frac{f(x) + f(a+b-x)}{2} - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \begin{cases} \left[\frac{1}{8} + 2 \left(\frac{x-\frac{3a+b}{4}}{b-a} \right)^2 \right] (b-a) \|f'\|_\infty, & f' \in L_\infty [a, b] \\ \frac{2^{1/q}}{(q+1)^{1/q}} \left[\left(\frac{x-a}{b-a} \right)^{q+1} + \left(\frac{a+b-x}{b-a} \right)^{q+1} \right]^{1/q} (b-a)^{1/q} \|f'\|_{[a,b],p}, & p > 1, \frac{1}{p} + \frac{1}{q} = 1, \text{ and } f' \in L_p [a, b] \\ \left[\frac{1}{4} + \left| \frac{x-\frac{3a+b}{4}}{b-a} \right| \right] \|f'\|_{[a,b],1} & \end{cases}$$

for all $x \in [a, \frac{a+b}{2}]$.

Recently, Alomari [1] proved a companion inequality for differentiable mappings whose derivatives are bounded.

Theorem 4. Let $f : I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I° , the interior of the interval I , and let $a, b \in I$ with $a < b$. If $f' \in L^1[a, b]$ and $\gamma \leq f'(x) \leq \Gamma$, $\forall x \in [a, b]$, then the following inequality holds,

$$(1.4) \quad \left| \frac{f(x) + f(a+b-x)}{2} - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq (b-a) \left[\frac{1}{16} + \left(\frac{x-\frac{3a+b}{4}}{b-a} \right)^2 \right] \cdot (\Gamma - \gamma),$$

for all $x \in [a, \frac{a+b}{2}]$.

In [6], Dragomir established some inequalities for this companion for mappings of bounded variation. In [7], Liu introduced some companions of an Ostrowski type inequality for functions whose second derivatives are absolutely continuous. Recently, Barnett, Dragomir and Gomma [2], have proved some companions for the Ostrowski inequality and the generalized trapezoid inequality.

In the present paper we shall derive a companion inequality of Ostrowski's type using Grüss' result and then discuss its applications for a composite quadrature rule and for probability density functions.

2. THE RESULTS

The following companion of Ostrowski's inequality holds.

Theorem 5. Let $f : [a, b] \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) . If $f' \in L^1[a, b]$ and $\gamma \leq f'(t) \leq \Gamma$, for all $t \in [a, b]$, then the inequality holds

$$(2.1) \quad \left| \frac{f(x) + f(a+b-x)}{2} - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{1}{8} (b-a) (\Gamma - \gamma),$$

for all $x \in [a, \frac{a+b}{2}]$.

Proof. Let us define the mapping

$$p(x, t) = \begin{cases} t - a, & t \in [a, x] \\ t - \frac{a+b}{2}, & t \in (x, a+b-x] \\ t - b, & t \in (a+b-x, b] \end{cases}$$

for all $x \in [a, \frac{a+b}{2}]$.

Integrating by parts, we have

$$(2.2) \quad \frac{1}{b-a} \int_a^b p(x, t) f'(t) dt = \frac{f(x) + f(a+b-x)}{2} - \frac{1}{b-a} \int_a^b f(t) dt.$$

It is clear that for all $t \in [a, b]$ and $x \in [a, \frac{a+b}{2}]$, we have

$$x - \frac{a+b}{2} \leq p(x, t) \leq x - a.$$

Applying Theorem 2 to the mappings $p(x, \cdot)$ and $f'(\cdot)$, we obtain

$$(2.3) \quad \begin{aligned} & \left| \frac{1}{b-a} \int_a^b p(x, t) f'(t) dt - \frac{1}{b-a} \int_a^b p(x, t) dt \cdot \frac{1}{b-a} \int_a^b f'(t) dt \right| \\ & \leq \frac{1}{4} \left\{ x - a - \left(x - \frac{a+b}{2} \right) \right\} (\Gamma - \gamma) = \frac{1}{8} (b-a) (\Gamma - \gamma), \end{aligned}$$

for all $x \in [a, \frac{a+b}{2}]$. By a simple calculation we get

$$(2.4) \quad \int_a^b p(x, t) dt = 0, \quad \text{and} \quad \int_a^b f'(t) dt = \frac{f(b) - f(a)}{b-a}.$$

Finally, combining (2.2)–(2.4), we obtain (2.1) as required. \square

Corollary 1. *In the inequality (2.1), choose*

(1) $x = a$, we get

$$(2.5) \quad \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{1}{8} (b-a) (\Gamma - \gamma).$$

(2) $x = \frac{3a+b}{4}$, we get

$$(2.6) \quad \left| \frac{f\left(\frac{3a+b}{4}\right) + f\left(\frac{a+3b}{4}\right)}{2} - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{1}{8} (b-a) (\Gamma - \gamma).$$

(3) $x = \frac{a+b}{2}$

$$(2.7) \quad \left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{1}{8} (b-a) (\Gamma - \gamma).$$

An inequality of Ostrowski's type may be stated as follows:

Corollary 2. *Let f as in Theorem 5. Additionally, if f is symmetric about the x -axis, i.e., $f(a+b-x) = f(x)$, then we have*

$$(2.8) \quad \left| f(x) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{1}{8} (b-a) (\Gamma - \gamma),$$

for all $x \in [a, \frac{a+b}{2}]$. For instance, choose $x = a$, we have

$$(2.9) \quad \left| f(a) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{1}{8} (b-a) (\Gamma - \gamma).$$

3. A COMPOSITE QUADRATURE FORMULA

Let $I_n : a = x_0 < x_1 < \cdots < x_n = b$ be a division of the interval $[a, b]$ and $h_i = x_{i+1} - x_i$, ($i = 0, 1, 2, \dots, n-1$).

Consider the general quadrature formula

$$(3.1) \quad Q_n(I_n, f) := \frac{1}{2} \sum_{i=0}^{n-1} \left[f\left(\frac{3x_i + x_{i+1}}{4}\right) + f\left(\frac{x_i + 3x_{i+1}}{4}\right) \right] h_i.$$

The following result holds.

Theorem 6. *Let $f : I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I° , the interior of the interval I , where $a, b \in I$ with $a < b$. If $f' \in L^1[a, b]$ and $\gamma \leq f'(x) \leq \Gamma$, $\forall x \in [a, b]$. Then, we have*

$$(3.2) \quad \int_a^b f(t) dt = Q_n(I_n, f) + R_n(I_n, f).$$

where, $Q_n(I_n, f)$ is defined by formula (3.1), and the remainder satisfies the estimates

$$(3.3) \quad |R_n(I_n, f)| \leq \frac{(\Gamma - \gamma)}{8} \cdot \sum_{i=0}^{n-1} h_i.$$

Proof. Applying inequality (2.1) on the intervals $[x_i, x_{i+1}]$, we may state that

$$R_i(I_i, f) = \int_{x_i}^{x_{i+1}} f(t) dt - \frac{1}{2} \left[f\left(\frac{3x_i + x_{i+1}}{4}\right) + f\left(\frac{x_i + 3x_{i+1}}{4}\right) \right] h_i.$$

Summing the above inequality over i from 0 to $n-1$, we get

$$\begin{aligned} R_n(I_n, f) &= \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} f(t) dt - \frac{1}{2} \sum_{i=0}^{n-1} \left[f\left(\frac{3x_i + x_{i+1}}{4}\right) + f\left(\frac{x_i + 3x_{i+1}}{4}\right) \right] h_i \\ &= \int_a^b f(t) dt - \frac{1}{2} \sum_{i=0}^{n-1} \left[f\left(\frac{3x_i + x_{i+1}}{4}\right) + f\left(\frac{x_i + 3x_{i+1}}{4}\right) \right] h_i, \end{aligned}$$

which follows from (2.1), that

$$\begin{aligned} |R_n(I_n, f)| &= \left| \int_a^b f(t) dt - \frac{1}{2} \sum_{i=0}^{n-1} \left[f\left(\frac{3x_i + x_{i+1}}{4}\right) + f\left(\frac{x_i + 3x_{i+1}}{4}\right) \right] h_i \right| \\ &\leq \frac{(\Gamma - \gamma)}{8} \cdot \sum_{i=0}^{n-1} h_i. \end{aligned}$$

which completes the proof. \square

4. APPLICATIONS TO PROBABILITY DENSITY FUNCTIONS

Let X be a random variable taking values in the finite interval $[a, b]$, with the probability density function $f : [a, b] \rightarrow [0, 1]$ with the cumulative distribution function $F(x) = \Pr(X \leq x) = \int_a^b f(t) dt$.

Theorem 7. *With the assumptions of Theorem 4, we have the inequality*

$$\left| \frac{1}{2} [F(x) + F(a+b-x)] - \frac{b - E(X)}{b-a} \right| \leq \frac{1}{8} (b-a) (\Gamma - \gamma),$$

for all $x \in [a, \frac{a+b}{2}]$, where $E(X)$ is the expectation of X .

Proof. In the proof of Theorem 4, let $f = F$, and taking into account that

$$E(X) = \int_a^b t dF(t) = b - \int_a^b F(t) dt.$$

We left the details to the interested reader. \square

Corollary 3. *In Theorem 7, choose $x = \frac{3a+b}{4}$, we get*

$$\left| \frac{1}{2} \left[F\left(\frac{3a+b}{4}\right) + F\left(\frac{a+3b}{4}\right) \right] - \frac{b - E(X)}{b-a} \right| \leq \frac{1}{8} (b-a) (\Gamma - \gamma).$$

Corollary 4. *In Theorem 7, if F is symmetric about the x -axis, i.e., $F(a+b-x) = F(x)$, we have*

$$\left| F(x) - \frac{b - E(X)}{b-a} \right| \leq \frac{1}{8} (b-a) (\Gamma - \gamma),$$

for all $x \in [a, \frac{a+b}{2}]$.

REFERENCES

- [1] M.W. Alomari, A companion of Ostrowski's inequality with applications, *Trans. J. Math. Mech.*, 3 (1) (2011), 9–14.
- [2] N.S. Barnett, S.S. Dragomir and I. Gomma, A companion for the Ostrowski and the generalised trapezoid inequalities, *J. Mathematical and Computer Modelling*, 50 (2009), 179–187.
- [3] A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, *J. Approx. Th.*, 115 (2002), 260–288.
- [4] S.S. Dragomir and Th.M. Rassias (Ed.), *Ostrowski Type Inequalities and Applications in Numerical Integration*, Kluwer Academic Publishers, Dordrecht, 2002.

- [5] S.S. Dragomir, Some companions of Ostrowski's inequality for absolutely continuous functions and applications, *Bull. Korean Math. Soc.*, 42 (2005), No. 2, pp. 213–230.
- [6] S.S. Dragomir, A companion of Ostrowski's inequality for functions of bounded variation and applications, *RGMIA Preprint*, Vol. 5 Supp. (2002) article No. 28. [<http://ajmaa.org/RGMIA/papers/v5e/COIFBVAApp.pdf>]
- [7] Z. Liu, Some companions of an Ostrowski type inequality and applications, *J. Ineq. Pure & Appl. Math.*, Volume 10 (2009), Issue 2, Article 52, 12 pp.
- [8] D.S. Mitrinović, J.E. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, (1993).

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, JERASH PRIVATE UNIVERSITY, 26150
JERASH, JORDAN
E-mail address: mwomath@gmail.com